Estimation for the Prediction of Point Processes with Many Covariates

نویسنده

  • Alessio Sancetta
چکیده

Estimation of the intensity of a point process is considered within a nonparametric framework. The intensity measure is unknown and depends on covariates, possibly many more than the observed number of jumps. Only a single trajectory of the counting process is observed. Interest lies in estimating the intensity conditional on the covariates. The impact of the covariates is modelled by an additive model where each component can be written as a linear combination of possibly unknown functions. The focus is on prediction as opposed to variable screening. Conditions are imposed on the coe cients of this linear combination in order to control the estimation error. The rates of convergence are optimal when the number of active covariates is large. As an application, the intensity of the buy and sell trades of the New Zealand Dollar futures is estimated and a test for forecast evaluation is presented. A simulation is included to provide some nite sample intuition on the model and asymptotic properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Prediction of mental disorders after Mild Traumatic Brain Injury: principle component Approach

Introduction: In Processes Modeling, when there is relatively a high correlation between covariates, multicollinearity is created, and it leads to reduction in model's efficiency. In this study, by using principle component analysis, modification of the effect of multicolinearity in Artificial Neural Network (ANN) and Logistic Regression (LR) has been studied. Also, the effect of multicolineari...

متن کامل

برآورد خطای پیش بینی برای وضعیت بقا و کاربرد آن درتحلیل بقای بیماران مبتلا به سرطان روده بزرگ

Introduction: Colorectal cancer is one of the most widespread and killer among cancers. It is important that we predict what status people have in the future. The purpose of this study was comparison of the Cox model and Kaplan-Meier curve with IBS and also identifying the factors about predicted survival time of patients with colon cancer. Materials & Methods: This paper is related to colore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017